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A Priori Estimates and Analysis 
of a Numerical Method 

for a Turning Point Problem 

By Alan E. Berger*, Houde Han and R. Bruce Kellogg** 

Abstract. Bounds are obtained for the derivatives of the solution of a turning point problem. 
These results suggest a modification of the El-Mistikawy Werle finite difference scheme at the 
turning point. A uniform error estimate is obtained for the resulting method, and illustrative 
numerical results are given. 

I. Introduction. We will examine the following two-point boundary value problem 
with Dirichlet data at the endpoints: 

(l.la) Ly= -eyx.(x) -p(x)yx(x) +q(x)y(x) =f(x) for -I <x< 1, 

(1.lb) y(-1) = dl, y(1) = d2. 

Here E is a constant in (0, 1], p is assumed to be in C2[- 1, 1], q and f are required to 
be in C'[- 1, 1], and d, and d2 are given constants. The function p(x) is allowed to 
have a finite number of zeros located at points z1,..., Zr in (- 1, 1). The zeros of p 
are assumed to be simple, and p( - l)p(1) must not vanish. The points zi are called 
turning points of (1.1). Also q(x) is required to be bounded below by some positive 
constant kq, so we are thus excluding the so-called resonance cases, e.g. [1]. The 
above assumptions will be in force throughout the rest of this paper. This type of 
problem arises, e.g., as a linearized one-dimensional slice of a fluid flow problem 
having a region of recirculation. Under these conditions (1.1a) satisfies a maximum 
principle [16, p. 6], i.e., 

(1.2) if y(x) in C2[- 1,1] is such that Ly > 0 on (-1,1) and 
(1.2) y(? 1)> 0, theny(x) > 0 for -1 < x < 1. 

Existence and uniqueness of the solution of (1.1) follow easily from (1.2) and 
existence of solutions of the initial value problem for (1. la). 

We will see below that the bounds on the behavior of y(x) near a given turning 
point z, depend specifically on - and on the constant fPi = q(z,)/px(zi). If fPI < 0, it 
will be shown that y(x) is "smooth" near x = zi; on the other hand if fPi > 0, then 
there is in general an "internal layer" at x = zi, the nature of which depends in a 
fundamental way on f,B. Results in [12] will be used to show that in general y has a 
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boundary layer at x = - 1 [x = + 1] if and only if p(- 1) > 0 [p(1) < 0]. These 
results will be stated precisely in Section 2, and their proofs will be given in Section 
4. 

The a priori estimates given in Section 2 are direct explicit bounds on the 
derivatives of y(x) which are obtained by local examination of y(x) near each 
turning point. When Pi > 0 this entails employing appropriate parabolic cylinder 
functions and the Green's function for a local approximation of the operator L. This 
is a somewhat different approach from the asymptotic expansions obtained by, e.g. 
[7], [8], [9]. The results obtained here remain valid as /B varies though positive integer 
values. 

In Section 3 we describe the modification for use with turning point problems of 
the El-Mistikawy Werle exponential finite difference scheme [6] which is suggested 
by the results in Section 2. A uniform error estimate is also proven in this section by 
using comparison functions and the a priori estimates, and some illustrative numeri- 
cal results are displayed in Section 5. We note that Farrell [8], [9], [21] has obtained a 
set of general sufficient conditions for a scheme to be uniformly accurate for turning 
point problems. Other results for numerical methods for turning point problems 
have been obtained in [2], [13], [14], [15]. 

lI. Statement and Discussion of the A Priori Estimates. We first use the maximum 
principle to show that the solution of (1.1) is bounded. Then we make some further 
preliminary observations concerning (1.1) which will effectively reduce the situation 
to considering the case of one turning point located at x = 0 for which / > 0. The a 
priori estimates will then be stated. 

For any given function g(x) in Ck[ - 1, 1] (k a nonnegative integer) let IIII k 

denote Ek o max_ l x IIDxg(x)l, where Dxg(x) denotes the ith derivative of g (and 
where Dxog(x) g(x) and DX DX). Let y(x) be the solution of (1.1) and set 
+(x) -li lll/kq + max(ldll, ld2l). 

Then, applying the maximum principle (1.2) to 4(x) ? y(x), one finds that 

(2.1) IIYIIo < lfIllo/kq + max(1d1 1, Id2l) . 

From (2.1) and (1.2) we now show that the turning points and boundary points 
can be treated individually for the purpose of studying the regularity of the solution. 
Suppose [a, b] is a subinterval of [- 1, 1] which contains none of the turning points 
{Z1, . , Zr). Recall (2.1) provides a bound for y(a) and y(b). Then Lemma 2.3 of 
[12] can be used to bound the derivatives of y on [a, b]; we restate a form of this 
lemma here making more precise what the constants in the estimates depend on. 
Suppose p, q, and f are in Cm[a, b] with m a positive integer, lp(x)l > B1 for 
a < x < b (B1 a positive constant), and let SI(m) denote the set (lIPlim IIqIIm, I ll fIrn 
B1, b - a, y(a), y(b), m) (here the Cm norms of p, q, and f are on the interval 
[a, b]). Then 

LEMMA 2.1 [12]. There are positive constants ij and C depending only on SI (m) such 
that if p(x) > 0 on [a, b], then 

(2.2a) IDxy(X)i s C + Ce- 'exp( -2i(x - a 
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while if p(x) < 0 on [a, b], then 

(2.2b) IDxy(x)I < C + Ce- exp(-2'q(b - X)/E) 

for i = ,.,m + 1, a x -< b. 

Lemma 2.1 provides bounds on the behavior of y at the endpoints x = + 1, and 
shows that if p(- 1) < 0 [p(l) > 0], then there is no boundary layer at x = -1 

[x = 1], since, for k and c given positive constants, 

(2.3) sk exp( -cs) is bounded fors > 0. 

Another consequence of Lemma 2.1, (2.1) and (2.3) is the fact that the solution 
y(x) of (I.1) is "smooth" away from {- 1, 1, z ... , Zr)} i.e., 

Remark 2.2. Let [al, bI] be a subinterval of [-1, 1] contained in an interval (a, b) 
such that [a, b] contains none of the points (- 1, 1, z , . . ., Zr). Assumef, p and q are 
in Cm[- 1, 1] with m a positive integer and let S2(m) denote the set (IIPpIm, IIqIIm, 

lilfl lm mina<x<bip(x)i, b - a, b - b,, a, - a, kq, jdll, jd21, m). Then there is a 
constant C depending only on S2(m) such that 

(2.4) |lDxy(x)l < C for i = I,.., m + 1, a, x < bl. 

Lemma 2.1 and Remark 2.2 and (2.1) reduce the matter of a priori estimates for 
y(x) to producing bounds for Dky(x) in a neighborhood Ni of each turning point zi. 
Toward this end one can easily verify 

Remark 2.3. There is a positive constant 6 depending only on the set S3 = {p P( - 
IP(l)i, IIPII2, max(j/llj,..., i3rl)) kq) such that for i = 1,..., r the neighborhood 
N- [z, - 8, z, + 6] of the turning point zi does not contain any other turning point 
of (1.1) or the points + 1. Furthermore 

(2.5) jpX(x)j>jpx(zj)/2j forxinNi. 
The condition (2.5) will be convenient for some of the proofs. By using the 

transformation 
(2.6) x = 6-1(x-zi) forxinN 

one may thus reduce the study of the behavior of y(x) near a given turning point z1 
to the case of (1.1) where p (x) has precisely one zero located at x = 0. Note that the 
quantity /B for a given turning point remains invariant under the change of 
independent variable given by (2.6). We are thus led to considering (1.1) under the 
following hypotheses. 

(2.7a) p(x) is in C2[-1, ] andfand q are in C'[- 1, ], 
(2.7b) e is in (0, 1], 
(2.7c) q(x) > kq > 0 on [- 1, 1], where kq is a positive constant, 

(2.7d) p (x) has a simple zero at x = 0 and no other zeros on [- 1, 1], 

(2.7e) lpx(x)I > Ipx(0)1/2 for -1 < x <. 1. 

Let /3 = q(0)/px(O), and let /3,, B be fixed positive constants such that /3, < 1 < /B 
and 

(2.7f) next sotay( < xs 

We next show that y(x) is "smooth" near x = O if ,B < O; cf. [I]. 
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THEOREM 2.4. Assume (2.7a-f), suppose /3 < 0, let p, q, and f be in Cm[ - 1, 1] with 
m a positive integer, and define S4(m) = (liPlIm, IIqmI lIflim IIM9 kq, qd11, Id2I, i) 

Then there is a constant C depending only on S4(m) such that 

(2.8) JD4ky(x)| < C fork = 1,..., m, and lxi < 1/2. 

We remark that the choice of 1/2 in (2.8) is arbitrary, and Lemma 2.1 and 
Remark 2.2 can be used to describe the behavior of y for lxI> 1/2. 

Proof. From the mean value theorem and (2.7e, f), 

(2.9) lp(x)| = lp(x) -p(O)I = pxl lpx()I > lXl lpx(0)1/2 > *5IxIkq//l5. 
Remark 2.2 implies that IDxky(? 1/2)1 < C1 for k = 1,..., m where Cl depends only 
on S4(m). For k = 1,..., m, if (1.la) is differentiated k times, one finds that the 
differential equation satisfied by z(x) Dxky(x) is 

(2.10) - EZXX -P(x)zx + [q(x) - kpx(x)]z(x) = g(x), 

where g depends on y, . . ., Dxk- 'y and on at most k th order derivatives of p, q, and 
f. Applying (2.1) with q replaced by q - kpx, and using an inductive argument, we 
obtain (2.8). 

We have thus reduced the study of the solution to the case of (2.7a-f) together 
with 

(2.7g) /3>0. 

We now state the results for the case of (2.7a-g). The proofs will be given in Section 
4. 

For convenient reference define, for m any positive integer, the set S5(i) = {IIP112, 
1q111, Illf II, kq9 /l, Pls, ldll, Id2l, IIPIIm, IIqIIm, liflilmi m). Then we have 

THEOREM 2.5. Assume (2.7a-g) and let y(x) denote the solution of (1.1). Then there 
is a constant Cl depending only on S5(1) such that 

(2.1la) DXy(x)I s Cl(X2 + E) I(x, E, /) for -1 < x < 1, 
where 

(2.1lb) I(x, E, /3) f6 S(fi1)/2 ds. 

The choice of 6 as the upper limit of integration in (2.1 Ib) is a matter of 
convenience in the proofs (any number larger than 2 would be valid). Note also that 
there are constants c and C depending only on P, and Ps5 such that if 

(2.11c) p = E1/2 

then 

(2.12) C(IXI + )-l < (x2 + E)(/1)/2 < C(IxI + p) 

so that (2.1 la) could just as well be written as 

(2.11d) ID,y(x)I < C1(IxI + p)8 I(x, E, /3) for -1 < x < 1. 
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Also, we note that 

2: (6(1 - )/2 _X (2 + e) 
( 

l-:/2,,B 1 
(2.11e) I(X,E,=3)= 

{1n /3=1. 

Here we are employing the convention that c, C, cl, Cl, etc. denote generic 
positive constants which may depend on S5(m), but which do not depend on E or x 
(or the mesh size h when the approximate problem is under discussion), and whose 
values may change from one usage to the next. In particular, insofar as /B is 
concerned, these constants may depend only on ,B, and 8, and the assumption that 
0 < A 11P 

To get a clearer picture of the dependence on /3 of the bound for yX(x) given in 
Theorem 2.5, one can observe the following. Suppose /3 is in [/3, 1 - k] for some 
positive constant k. Then I(x, E, /3) < C(k), and so (2.1 ld) becomes 

lyx(x)l < C,(k)(|xl + p) for -1 < x < 1, / in [,3, 1 - k]. 
If /3 is in [1 + k, Ps], then I(x, E, /) < C(k)(jxI + p)' /-, and so 

|yx (x) I < Cl (k) for-1I < x < 1, ,B in [I + k, 13s] 
while if /3 = 1 evaluation of I(x, E, 1) shows that 

lYX() < 1L[X2 + E)] for-1I <. x < 1 B1 

The following technical lemma, which one would expect to be true from (2.11), 
will be proven in Section 4. 

LEMMA 2.6. There is a positive constant C2 depending only on /,I and ,8s such that for e 
in (0, 1] and/3, < 3 P, 

(2.13) (x + E) I(x, ?, ) > C2 for -1 < x < 1. 

We also have the following estimates on the higher derivatives. 

THEOREM 2.7. Assume (2.7a-g) and in addition assume f, p, and q are in CK[- 1, 1], 
where K > 2 is an integer. Then there is a constant C depending only on S5(K) such 
that fory the solution of (l.1) 

(2.14) JL4y(x)J s C(jx{ + p) I(x, E, 3) 

for-1 x < Iandk = 1525,...,5K+ 1. 

When /3 is above 1, (2.14) is not a good estimate for the higher derivatives of y 
since I(x, -, /3) increases with /3. An improved result for this situation is: 

THEOREM 2.8. Suppose /3 = m + /\ where m is a positive integer and /, < / </,, 
and assume (2.7a-g). (For this result the "appropriate" choice of [,8Z, /s] is [cO, 1 + cO], 
where co is a "small " positive constant.) Let f, p, and q be in Cm+'[ - 1, 1] for i > 2 an 
integer. Then there is a constant C depending only on S5 (m + i) such that for y the 
solution of (1.1) 
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(2.15b) IDky(x)I < C(|x| + p) fkI(x, E, A) 

for -1 X < 1 andk = m + 1,..., m + i + 1. 

In the above situation where i = 1; (2.15a) is valid, and (2.15b) holds for 
k=m+ 1. 

We note that for , > 0 not an integer and for sufficiently smooth p, q, and f, 
Farrell [9] has previously shown that 

IDxky(x)l < M(k, 3)[1 + (lXI + p) ]k for -1 < x < 1, k = 1,2,..., 

where the positive constant M(k,8/) does not depend on x or E. This result 
corresponds to (2.14), (2.15) since for ,B not an integer one can write / = m + A 
with O < A < 1 and so I(x, E, A) < C(s). 

The above theorems, together with Remark 2.3, may be used to derive estimates 
for the solution of (1.1), with turning points xi * + 1, 1 < i < r, and with possible 
boundary layers at x = + 1. For this we require some notation. We define the index 
set I c (1,. . ., r) by I = (i: Pi > 0). In a similar way, we definexl = -1, x = + 1, 
and we define J* C (1, 2) by J* = (j: (-1)'p(x ) < 0). Either of the sets I or I* 
may be empty, but it cannot happen that both sets are empty. 

Let 8>0 and N, 1 < i < r, be as in Remark 2.3. Let kp=min(Ip(x)l: x N1, 
1 < i < r). Let S6(m) = {(IIpIm, I IqIm lIflim, IdI1, Id2 1, kp, kq 6, 8/, /s, m). The 
following theorem is the generalization of Theorem 2.7 to the case of an arbitrary set 
of boundary layers and interior turning points. A similar generalization of Theorems 
2.5 and 2.8 could also be made. 

THEOREM 2.9. Suppose f, p, q are in CK[ 1, 1], where K > 2 is an integer. Then 
there are positive constants C and rj, depending only on S6(K), such that if/3, < 1,3ij < 

Ps, 1 < i < r, then 

(2.16) IDxky(x)I < C E (Ix - xj + P)fI(x - xi, E /3) 

+ E E k exp[ qIxx |/x]+ } 

-l I 1, 1 < k K+ 1. 

Finally, we note that the preceding estimates enable one to examine how the 
solution y(x) of (1.1) approaches the solution v(x) of the reduced problem (i.e., 
(1.la) with E = 0, and the boundary condition v(- 1) = d, [v(l) = d2] imposed if 
and only if p( - 1) < 0 [p(l) > 0]). For a discussion of the reduced problem and 
estimates of y - v see, for example, [22], [1, pp. 54, 59, 68]. In the case of a single 
turning point at x = 0, one can easily show the following result (the proof is in 
Section 4). A similar result could be formulated for the case of an arbitrary number 
of turning points. 

Remark 2.10. Assume (2.7a-e), / > 0, and suppose p, q, and f are in C3[- 1, 1]. 

Then there is a constant C(,B) depending only on S5(3) and /3 such that 

(2.17) IIY - vllo < C(,B)[E + Efl/2 (ln(6/e)) ] 
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where if /B = 1, then q = 1, if /3 = 2, then i = 2, while 0 = 0 for all other /3 > 0. 
This also shows that v(x) is continuous at x = 0. 

Remark 2.11. Assume (2.7a-e), /3 < 0, and suppose p, q, and f are in C2[- 1, 1]. 
Then there is a constant C depending only on the set S4 (2) (defined in Theorem 2.4) 
such that 

(2.18) ly(x) - v(x)l < Ce for Ixl < 1/2. 

III. A Uniform Error Estimate for a Modification of the El-Mistikawy Werle 
Scheme for (1.1). In this section we will consider approximating the solution y(x) of 
(1.1) using a modification of the exponential scheme of El-Mistikawy and Werle [6] 
which they constructed by using a specific choice of the general approach of Pruess 
[17] and Rose [18]. We will then use the bounds on lyx(x)l given in Section 2 along 
with appropriate comparison functions to estimate the difference in Ll(- 1, 1) 
between y(x) and its approximation. 

We now describe in detail the general approach of the El-Mistikawy Werle 
scheme, which is to replace (1.1) by a piecewise constant coefficient approximating 
differential equation. Consider (1.1) and assume (2.7a-c). Let J be a positive integer 
and define the uniform mesh length h = 2/J. Let the grid points (xj) be given by 
xj = -1 + jh for j = O, 1,..., J, and let Yj denote the approximate value (to be 
determined) foryj = y(xj). The solution Y(x) of the problem 

(3.1a) EY- -eYxx(x) - P(x)Yx(x) + Q(x)Y(x) = F(x), 

(3.1b) Y(-1)= Yo=d1, Y(1)= Yj=d2 

is used to approximate the solution y(x) of (1.1), where P, Q, and F are constants on 
each subinterval (xj-, xj), 1 < j < J (the values of which may vary from one 
subinterval to the next). Y(x) satisfies (3.1) in the sense that Y(x) is in C[ - 1, 1], 
(3.1b) holds, and (3.1a) is valid for x in X' U J1(xj_, xj). We will assume in 
what follows that Q(x) is chosen such that 

(3.2a) Q(x) > kq, xinX' 

and P, Q, and F satisfy 

(3.2b) |P (X) - p (x)|I + I|Q(X) - q(x)|I + |F(X) - f (x)|I < Ch for x in X', 

where C depends only on IIp II 1q11qI1, and lI t II1. More specific choices for P, Q, and F 
will be made below. 

The discussion in the beginning of Section 2 of [4] shows that (3.1) has a unique 
solution in the sense just described. (The specific choices of P and Q given there are 
not required in the proof, which remains valid for the case of (3.1) if (3.2a) holds.) 
From [6] or from Section 2 of [4] one has that at each interior grid point xj a 
tridiagonal relationship of the form 

(3.3) - e2(- 2rjY>- 1 + ricYj + r+ Y?1 ) 

=Sij j-I + sCfj + S+f+ 1, 1 < j - 1, 

is valid for the solution Y of (3.1) where for each j the r and s coefficients in (3.3) 
can be determined as follows [4]. Let P- [P+] denote the value of P(x) on (x - 1, xj) 



472 ALAN E. BERGER, HOUDE HAN AND R. BRUCE KELLOGG 

[(xj, xj?)] and similarly for Q- and Q+. Let ft1 denote the negative root of 
-EW' - P-w + Q= 0, and let k, denote the positive root. Define n hft1 and 

k, = hk,. Similarly define n2 and k2 using the quadratic polynomial - cw2 - P+w 
+ Q+. Define the following functions; e(w) = exp(w), g(w) = (e(w) - 1)7w, with 
g(O) 1, and let 2v- [1 - e(n, - k,)]-l and 2v2 [1 - e(n2 - k2)A'. Then 
(suppressing thej subscripts) the r and s coefficients in (3.3) are given by 

r-= e(n1)/g(n -kl), r+= e(-k2)/g(n2 -k2) 

r = -n, - l/g(n -kl), r2 = k2- l/g(n2 -k2), 

(3.4) rc = r1 + r2, 
s-= g(n,)v, -e(n,)g(-k,)v, 

S+= g(-k2)v2 - e(-k2)g(n2)v2, SC = s+ S5. 

Remark 2.2 of [4] shows that the linear system (3.1b), (3.3), (3.4) has a unique 
solution which may be calculated using simple tridiagonal Gaussian decomposition. 
Thus (3.1) yields a readily implementable algorithm for obtaining an approximation 
to the solution of (1.1). 

If q(x) 0 and p(x) is nonzero on [-1, 1], it has been shown [4] that IIY - yIIo < 
Ch, with C > 0 independent of h and E. If q 0, P(x) = (pj-I + pj)/2 and 
F(x) = (f1_ + fj)/2 on (xj>, xj) for each j, then one has maxjIY(xj) - y(xj)l < 
Ch2 [4], [10]. A similar result holds in the case that P(x) 0 and q(x) > 0 on 
[- 1, 1] [10]. We will use a numerical scheme based on (3.1) for the solution of our 
turning point problem. Our analysis uses a comparison function argument. For this, 
we require the following lemma. 

LEMMA 3.1. Consider the operator Lw(x) = -Ew,,(x) - P(x)w,(x) + Q(x)w(x), 
where E > 0 and P and Q are constant on each subinterval (x11, xj), j = 1, . ..., J, and 
where here we only need assume Q(x) > 0. Suppose w(x) is in C1[ - 1, 1], w restricted 
to [xj- , x1] is in C2[xj_l, xj]for eachj, w(-1) > O, w(l) > 0, and Lw(x) > Oforall 
x in X'. Then w(x) > O for -1 < x < 1. 

Proof. If not, then there is an x0 in (- 1, 1) at which w attains its minimum and 
w(x0) < 0. Furthermore since w(? 1) > 0, x0 may be chosen such that x0 is in an 
interval [xi,1, x] on which w is not constant. One can then use the maximum 
principles in [16, pp. 6-7] applied to u = -w on the interval [xi-,, xi] to obtain a 
contradiction. 

The comparison function estimate for Y(x) - y(x) proceeds in the following 
fashion. Letting e(x) Y(x) - y(x), we have 

(3.5a) Ee(x) = F(x) -f (x) + (P(x) -p(x))yx(x) 

+ (q(x) - Q(x))y(x) g(x) forxinX', 

(3.5b) e(- 1) = e(1) = 0. 

Suppose we can choose a comparison function '(x) in C2[ - 1, 1] such that 

(3.6) t(?1)>O and EQ(x)>Ig(x)j forxinX'. 

Then Lemma 3.1 applied to w(x) = '(x) ? e(x) implies that 

(3.7) Ie(x)|I < (x) for-I < x < 1. 
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The estimates in Section 2 are used to bound g(x). A suitable t(x) is then chosen 
which satisfies (3.6) thus yielding an error estimate (3.7). 

We will give the error estimates for the situation when there is one turning point 
located at x = 0. The analysis of this case, together with Theorem 2.9, will make it 
clear how to treat (1.1) when there is more than one turning point. 

THEOREM 3.2. Assume (2.7a-f) and (3.2) and let /3 < 0. Then there is a constant C 
depending only on S4(1) (defined in Theorem 2.4) such that 

(3.8) 11 Y - yllo < Ch. 

Proof. From the maximum principle Y(x) and y(x) are both bounded so we may 
suppose h is bounded above by a fixed positive constant (described below). Recall 
Lemma 2.1 (on the intervals [-1, - 1/2] and [1/2, 1] with m = 1) and then define 
the comparison functions 

(3.9a) +,x) = C, exp(-2qc4(x + 1)/E), 

(3.9b) 42 (X) = C2 exp(-2qc4(1 - x)/E), 

where Cl, C2, C4 are positive constants to be chosen. By direct substitution and use 
of (2.9) and (3.2) one can easily verify that for h near 0 and for C4 fixed sufficiently 
small, there is a positive constant c5 depending only on S4 (1) such that 

(3.10a) LE I(x) > c5e-'il(x) forxinX'satisfying -1 < x < -1/2, 

(3.1Ob) Ei22(x) > c5&-'+2(x) for x in X' satisfying 1/2 < x < 1. 

From (2.3) one has in addition that 

(3.1 Ia) E I(x) < C for x in X' satisfying x > -1/2, 

(3.1 lb) Ip2(X) |C for x in X' satisfying x < 1/2. 

Now let 
(3.12) T(x) C3h + hij(x) + hi2(x). 

We conclude that (3.6) holds (with g(x) given in (3.5)) if C, and C2 are chosen 
sufficiently large and then an appropriately large C3 is fixed: this follows from (3.2), 
(2.1), (2.2) (with i = 1), Theorem 2.4 (with m = 1) and (3.10), (3.11). Then (3.7) and 
(3.12) yield (3.8), and the proof is complete. 

We now give the result for the case where /3 > 0 for which it will be convenient to 
define the following comparison function: 

(3.13) ((x, c) = (c2x2 + _)(1-1)/2I(cx, E, 3), 
where c is a (small) positive constant to be chosen below. Note that for c = 1, 
C,k(x, c) is just the right side of (2.1 la). We have 

THEOREM 3.3. Assume (2.7a-f) and (3.2) and let /3 > 0. Suppose P(x) > 0 for 
x > 0 and P(x) < 0 for x < 0. Then there are positive constants c and Cl depending 
only on S5(1) such that for y the solution of (1.1) and Y the solution of (3.1) it is true 
that 

(3.14) IY(x) -y(x) I < C, h4(x, c) for-i < X < 

with O(x, c) defined by (3.13). 
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Note that Lemma 2.6 shows that for c in (0, 1], 4(x, c) is bounded from below by 
a positive constant. In order to demonstrate (3.14) we first prove the following 
lemma. 

LEMMA 3.4. For any c in (O, 1], DL,(x) < O for O < x < 1, and hence if O < cl < 
C2 < 1 and lxl < 1, then 'k(x, cl)> k (x, C2). Assuming the hypotheses of Theorem 3.3, 
there are positive constants c < 1 and c3 depending only on S5 (1) such that 

(3.15) I4(x,c)> C30(X,c) forxinX'. 

Proof. We first show D O(x, c) < 0 for 0 < x < 1. Write out Dx+(x, c) and 
consider the term containing the factor I(cx, ,,/) and (except when /3 = 1) ex- 
plicitly evaluate this integral. The contribution from the lower limit of integration 
exactly cancels the other term, and one finds that Dxo(x, c) has the form xd(x, e) 
where d(x, E) < 0 for lxl < 1 and E in (0, 1]. We now prove (3.15). By (3.2a) and 
Lemma 2.6 one has that 

Q(x) (x, c) > kqk(x, c)/2 + kqc2/2 for c in (0, 1] and x in X'. 

Since P(x) > 0 for x > 0 and P(x) < 0 for x < 0 we have -P(x)Ox(x, c) > 0. 
Explicitly evaluating - EOxx(x, c) and observing that E < (C2X2 + E) and c2x2 < 
(c2x2 + e), one finds that, for c > 0 sufficiently small, -e-xx(x, c) > -kqc2/4 - 
kqk(X, c)/4, and (3.15) follows. 

With Lemma 3.4 in hand, the proof of Theorem 3.3 is then an immediate 
consequence of (3.5a), (3.2b), (2.1), and Theorem 2.5. The bound on the error given 
in (3.14) suffers a large growth when IxI < h, /3 < 1 and E is small. This can be 
remedied with stronger conditions on the choice of P(x). Numerical results given in 
Section 5 for the unmodified El-Mistikawy Werle scheme (i.e., for each j, P(x) = 
(pJ + pj?+ )/2 on (xj, xj+I) and similarly for Q and F) suggest that some such 
stronger conditions are indeed necessary to prevent loss of accuracy when E << h, 
lxl <h, and / < 1. We have 

THEOREM 3.5. Assume the hypotheses of Theorem 3.3 and furthermore assume 

IP(x)l < C4 IxI for x E X'. Then there is a constant C5 > 0 depending only on C4 and 
S5(1) such that with c the same as in Theorem 3.3 

(3.16) IY(x) -y(x)| < C5ho(h, c) for lxi < 1. 

The condition IP(x)l < C4ixl may be easily satisfied by slightly modifying the 
choice of P(x) near the turning point: if there is a mesh point xi coinciding with the 
turning point x = 0 then the condition IP(x)l < c41X1 will be satisfied if (in addition 
to (3.2b)) P(x) 0 on (xi 1, xi+I). If the turning point x = 0 is in the interior of 
(xl, xi+ 1), then the condition IP(x)l < C4IxI may be imposed by setting P(x) p(x1) 
on (x 11, xi), P(x) O on (xi, xi+1), and P(x) p(x,+1) on (xi+1, x,+2) (in 
addition to (3.2b)). 

Proof of Theorem 3.5. From (3.2a), (3.5)-(3.7), and with D a (large) constant, it 
suffices to show g(x) in (3.5a) is bounded by Cho(h, c). Since 4(x, c) is decreasing 
for x > 0 (by Lemma 3A4) it remains to prove the latter for x in X' with 0 < x < h 
(the case of x < 0 being symmetric). It is thus sufficient to show that 
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and hence it suffices to demonstrate that 

x+(x, c) < Cho(h, c) forO s< x < h. 

Let b(x) = x+(x, c). Then by the mean value theorem, for any x in [0, h) there is a 
( in (x, h) such that 

x+(x, c) = b(x) = b(h) - (h - x)b(j) 

= h (h, c) - (h - x)[o (t, c) + OX(t c)]. 

By combining k(t, c) and the term in (Ox(t, c) containing I(c,, c, /), one can verify 
that for ( in (0, h), 0(t, c) + ,x(t, c) > -2 and so xo(x,c) < ho(h,c)+Ch 
which, recalling Lemma 2.6, completes the proof. 

It should be noted that Theorems 3.3 and 3.5 are not sharp, e.g., when E = 1 they 
only demonstrate 0(h) accuracy while for - = 1 the unmodified El-Mistikawy Werle 
scheme is 0(h2) [17]. Observe that Theorem 3.3 yields 0(h) accuracy away from the 
turning point for any ,B in [/3,, /3], and (3.16) implies that 

(3.17a) IIY - yIIo < C(p)(h + h) whenf3 > 0, 1* 1, 

(3.17b) IIY-YIIO < C5hln when,B = 1. 
ch2 

Farrell [8], [9], [21] has obtained a general set of sufficient conditions on the 
coefficients of a large class of tridiagonal finite difference schemes for (1.1), (2.7), 
/3 > 0 not an integer, which when satisfied imply that the error at all the grid points 
is bounded by C(Q3)(hV + h). 

IV. Proofs of the A Priori Estimates When / > 0. In this section we will provide 
the proofs of the results in Section 2 which were not proven there, starting with 
Theorem 2.5. Unless otherwise stated, in this section conditions (2.7a-g) will be 
assumed to hold for (1.1). Note that it suffices to prove the results for - in (0, E0] for 
a fixed positive c0 < 1. 

We may rewrite (1.1) in the form 

(4.1a) -EYXX(x) -px(0)xyx(x) + q(O)y(x) = g2(X) for [xl < 1, 
where 

(4.1b) g2 (x) =f(x) + ( p(x) - px(0)x)yx(x) + (q(O) - q(x)) y(x), 

(4.2) y(- 1) = d, and y(1) = d2. 

We first show that without loss of generality we may take q(O) = 1 in (4.1). Note 
that q(O) is bounded between kq and 1jq111. Define a by 

(4.3) a = 17/3 =px(0)/q(0), 

and then divide (4.1 a) by q(O), obtaining 

(4.1c) - (,/q(O))yxx(x) - axyx(x) +y(x) = g2(x)/q(O). 

It can be verified that if E = c/q(O), then for k any given positive integer 

( 2 X )()-k)/2 < C(X2 + E)('3-k)/2 and I(x, ,) < CI(X, c,/); 

for this observe that in the case c l/q(O) < 1 

j6 5(-f-1)72 ds 6 5 -1)/2 ds, 
x2+c Ccx2+ C' 
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and then use the change of variable s = s/c; the other parts are straightforward to 
check. The a priori estimates are hence not materially affected by replacing E by 
e/q(0), and it will be seen below (cf. the discussion below (4.20)) that neither is the 
relevant behavior of g(x). Thus instead of (4.1c, b), (4.2) it suffices to consider the 
problem 

(4.4a) My -,-yx(x) - axy,(x) +y(x) = g(x) for lxl < 1, 

where 

(4.4b) g(x) =f(x) + (p(x) -p_(0)x)y,(x) + (q(0) - q(x))y(x), 

(4.4c) y(-l) = d, and y(l) = d2. 

The general approach to be used in treating (4.4) is to write y(x) in the form 
u1(x) + u2(x), where Mu, = 0 and u,(- 1) = y(- 1), u1(l) = y(l), and where Mu2 
= g with u2(? 1) = 0. A priori estimates on the behavior of the function u1(x) are 
obtained through the direct use of parabolic cylinder functions. These functions are 
also used to construct and obtain bounds on the Green's function for M which is 
then used to obtain the desired bound on Dxu2(x). Higher derivatives of u2 are 
bounded via an inductive argument. 

4.1. Parabolic Cylinder Functions. We recall some properties of the parabolic 
cylinder functions that are relevant to our analysis. Given a function w(t) consider 
the corresponding function w(x) defined by 

(4.5a) w(x) = (AW [()], 

where 

(4.5b) t(x) a' 2x/p and +(x) exp(-ax2/(4c)) = exp( -t2/4). 

One can then check that w(x) satisfies Mw = 0 if and only if w(t) satisfies 

(4.6) Wtt- [t2/4 + / + 1/2]w = 0. 

From [3], [20], one recalls that (4.6) determines the parabolic cylinder function with 
the index a of [3] given by a = /3 + 1/2. Following [3], there are two linearly 
independent solutions of (4.6), U(a, t) and V(a, t). These functions satisfy, for 
arbitrary real a: 

(4.7a) U(a, t) = exp(-t2/4)t-a-l/2 . (1 + 86) fort > Cl(a), 

(4.7b) V(a, t) = (2/7r)1/2 exp(t2 /4)ta- I/2 . (1 + 62) for t > C2(a), 

(4.7c) ffV(a, t) = F(a + 1/2)(sinfra * U(a, t) + U(a, -t)), 

where C,(a) and C2(a) are (large) positive constants and 1861 + 1821 s 1/3. Note 
that when a = /3 + 1/2 - k for k = 0 or 1, and , < ,B < Ps, F(a + 1/2) is nonzero 
and finite, and hence for such an a 

(4.7d) U(a, -t) = (1 + 63)'7TV(a, t)/P(a + 1/2) fort> C3(a), 

where C3(a) is a positive constant and 1831 < 1/3. From this it follows that 

(4.7e) I V(a, -t)| < C4 (a)| V(a, t)j for t > 5 (a), 

where C4 (a) and C5 (a) are positive constants. 
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It is also true [3] that for arbitrary real a 

(4.8a) U, (a, t) = .5tU(a, t) - U(a - 1, t), 

(4.8b) Vt(a, t) = .5tV(a, t) +(a - 1/2)V(a - 1, t), 
from which it follows that for arbitrary real a 

(4.9a) UX (a, x) = -a ct/2 U(a - 1, x)/p, 

(4.9b) JX (a, x) = (a - 1/2)a"'/2 (a - 1, x)/p. 

Now consider the two functions I- and IL which are solutions of My = 0 and 
such that ji(- 1) = j+(1) = 0 and M-(l) = M+(- 1) = 1. We may write 

(4.10) ul(x) = ul(0)1r(x) + ul(-1)M'(x), 

and thus to analyze u1(x) it suffices to analyze the behavior of y- and y'. These 
functions will also be used below to explicitly examine the Green's function for the 
operator M which will be used to obtain the desired estimates for u2(x). 

4.2. Analysis of y- and I+. Let U(x) = O(x)U(t), V(x) = O(x)V(t) as in (4.5a); 
we suppress the dependence of these functions on a when the value of a is clear from 
the context. Write t+(x) = y+ U(x) + 6+ V(x), t-(x) = y U(x) + 6- V(x), where 
y-+, 6? are constants whose dependence on E we wish to determine. Then 

(4.11) (A 1 1) (6 
where 

L U(l) v-(l)a 
We assume that E is so small that for /AZ < /B< fl, and a = /3 ? 1/2, (4.7) holds for 
t = a1/2/p. Using (4.7), we find that the inverse of the matrix A has the form 

(4.12a) A 
[C2 p3I0+1 exp( -.5a/e) k2] 

where 
(4.12b) 0 < c3 <IklI < C4, =1,2, 

and where c3 and C4 depend only on a and the upper bound on E. We thus obtain 
y-= C1p, 8-= k2p . In a similar way, we may obtain y+, 6V. Summarizing these 
calculations, we have 

(.3 ([x) AX (x) [ U(X) Qx (x) 

where 

[Clp# k2PA 1 
[k1P C2p30+?1 exp(-.5a/E)] 

Then from (4.9) and (4.13), for i > 1, 

(4.14a) Dxy- (x) = Cp'-U(a - i, x) + Cp-'V(a - i, x), 

(4.14b) Dxi+ (x) = Cp,-iU(a- i, x) + Cp38+1-i?exp(-.5a/E)V(a i, x). 
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Note that since U(a - i, 0) and V(a - i, 0) are finite, (4.7a, b) and the maximum 
principle for M imply that U(a - i, x) and V(a - i, x) are bounded for 0 < x < Cp. 
We now establish estimates for the derivatives of u,(x). (See also [8, Lemma 2].) 

LEMMA 4.1. Let u1(x) satisfy Mu, = 0 with u(? 1) = y( 1). Then for i = 1, 2, ... 
there is a constant Ci such that 

(4.15a) IDxu1() Cx/p'i for IxI < p, 

(4.15b) lDxu1(x)I Ci1i/lxl X for IxI P. 

Proof. Recalling (4.10), for x > 0 the result follows from (4.14) and (4.7a, b) and 
from observing that, for x > p, (x/p)2i-2f- exp(-.5ax2/e) < C. For the case 
x < 0, observe that 

(4.16) = 

since w(x) = I+(-x) is a solution of Mw = 0, and its boundary values at x = + 1 
agree with those of It(x). Then, from (4.10) and (4.16), we have 

(4.17) (- 1)'(DxuI)(-x) = uI(1)Dx'+(x) + ul(- l)Dxy-(x), 
so the result for x < 0 follows from the analysis for x > 0. 

We next turn our attention to the Green's function for M in order to obtain the 
desired bounds on u2(x). 

4.3. The Green's Function for M. From, e.g., [5, p. 192] or [19] one may verify that 
the Green's function for M is given by 

(4.18a) G(x, T) = -J-(X)J+(T)E- x exp(.5aTr2/E)/W(0) forx < , 

(4.18b) G(x, T) = -[ (x)C(T)E& exp(.5aT 2/E)/W(0) forx > T, 

where 

(4.18c) W(x) i- x)14 (x) -I+ Wlx-(x), 
and the solution of Mu2 = g with u2(? 1) = 0 is given by 

(4.19) u2(x) = fG(x, T)g(T) dT 

= f G(x, T)g(T) dT + f'G(x, T)g(T) dT, 

and so 

(4.20) Dxu2(x) = fGX(x, )g(T) dT. 

We now discuss some properties of the function g given by (4.4b). We write 
g(x) = f(O) + g(x), where 

(4.21) g(x) = f (x) - f (0) + [ p(x) - xpx(0)] yx(x) + [q(0) - q(x)] y(x). 
Using Lemma 4.4 below, we see that Ig(x)l < Clxl. A solution of Mw = f(O) is 
w(x) f(O). We may then writey = u1 + f(O) + U2 with Mu1 = 0, and the boundary 
data of u, adjusted so u, + f(O) agrees with y at x = + 1, and with Mu2 = g(x) - 

f(O) and u2(? 1) = 0. Hence, taking Lemma 4.4 to be true, we may without loss of 
generality assume g has the form 

(4.22) g(x) = g,(x)x, where |g,(x)l < C. 
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In order to use (4.20) to estimate Dxu(x), we need some further bounds on It-, +,t, 
and W(O). From (4.13) and (4.9), for E < c one finds that 

(4.23) I W(O)I > kp2'- I 

for some constant k > 0. By the maximum principle, Ir(x) and j+(x) are in [0,1] 
for - 1 < x < 1. From (4.13), (4.9), and (4.7) we have 

(4.24a) IC(x) + t+(x) < Cpl forO < x < p, 

(4.24b) i-(x) < Cxx forp < x < 1, 

(4.24c) A " Cp2 +1x'9l1 exp(-.5ax2/c) forp < x < 1, 

and so (4.16) shows that 

(4.24d) A+(x) < C|x| for -1 < x < -p, 

(4.24e) 2r(x) < Cp2filIxIil exp(- .5ax2/e) for -1 < x < -p. 

Similarly we have 

(4.24f) itx(x) +Ii+(x) <- CpO- for Ixl < p, 

(4.24g) {cj(x) < Cxf forp < x 1, 

(4.24h) jy4(x ) Cp2f' ' exp(-.5ax 2/E)/x for p < x < 1, 

(4.24i) |;(x) | Cp2fl ' exp(- .5ax2/c)/IxI for - 1 < x <-p, 

(4.24j) IAX4(x)l < ClxlA 
I 

for -1 < x < -p. 

We can now prove 

LEMMA 4.2. Let U2(x) be given by (4.19) and assume g(x) satisfies (4.22). Then 
there is a constant C1 depending only on S5(1) such that 

(4.25a) IDU2(x)I C1 + C1P J I T-r' dT for lxl< p, 
max(Ixi, p) 

(4.25b) iDxU2(X)I < C1 + C1IXI' |f I T-fdT for lxl > p. 
max(lxI, p) 

Proof. We first show that it suffices to prove that 

(4.26a) FI(x)-f IGX(X, T)TIdT 

is bounded by the right-hand side of (4.25a) [(4.25b)] for lxl < p [lxl > p]. Suppose 
F1 (x) satisfies these bounds. By (4.20) and (4.22) it remains to show that 

(4.26b) F2(x) J GX(X, T)TrdT 

also satisfies these bounds. Now, by (4.18) and (4.16), 

(4.27) Gx(-X,-T) = -Gx(X,T)9 

so then 

F2(X) = fGx(-x -T)TldT =| fGx(-x s)slds = F,(-x), 
-x 
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so it suffices to estimate F1(x). We complete the proof by using (4.18), (4.23), and 
(4.24) to show that the integral of IGx(x, T)Tl over the following T intervals (and for 
various ranges of x) is bounded as claimed. 

Case I. - 1 < x < -p; x < T < -p, -p T X < p, p < T < 1. 
Case II. -p < x < p; x < T < p, p < X < 1. 
Case III. p < x < 1; x < T < 1. 

We present two representative verifications of the claimed bound, the rest being 
similar. First consider Case I with x < T < - p. Then 

(4.28) IGx(X, T)TI I -exp(-.5a(X2 - T2)/c)Tp 2-T/XI 

and, for x < T < -p, I TIxl < 1. Replacing the latter term by 1 in (4.28), we find 
that the integral of lGx(x, T)Tr from T = x to T = -p is < C. For Case I with 
p < T < 1, 

(4.29a) IGX(Xl T) TI < exp(-.5aYX2/e)p2fl- I xl 
8 
T-A 

- exp(-.25ax2/e) [exp(- .25ax2/E)(IxI/p)] 

*x Pl I p * 
x 

p-lX -p .IIl-]XAl_ 

The two bracketed terms are bounded by C and 1, respectively, and so 

(4.29b) fIGx(x, T)TldT < Cf exp(- .25ax /c)Ix/rTIPx| d- 

+ clxj fTP dT. 
jxj 

Now in (4.29b) T > p, so lx/Il < ix/pl and hence, using (2.3), the first term in the 
right side of (4.29b) is bounded by (lxI - p)Clxl- l < C giving the result. 

4.4. A Bound for yx(x). We prove the following lemma. 

LEMMA 4.4. Let y(x) be the solution of (1.1). Then there is a constant C depending 
only on S5(l) such that 

(4.30) |xDxy(x)l < C for-1I < x < 1. 

Proof. From the results in Section 2, y(x) is "smooth" for lxl > c, so it is only 
necessary to demonstrate (4.30) in a neighborhood of x = 0. We will show that 

(4.31) EIDXy(x)j < C 

which then implies (4.30). Let z(x) Dx2y(x). Then since p(O) = 0, Iz(0)I < C/e. 
Differentiating (1. la) once, we find that 

(4.32a) Nz -ezx(x) - p(x)z(x) = s(x), 

where 

(4.32b) s(x) = s1(x) +s2(x) withsl(x) =fx(x) - q,(x)y(x) and 

S2(x) = (px(x) - q(x))yx(x). 

Let 

(4.33a) P(x) -f|p(4) d and 4(x, ) exp[(P(x)- 
0 
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Then, as can easily be verified, the solution of (4.32a) is given by 

(4.33b) z(x) = z(O) exp(P(x)/e) - f s(()O(x, ) d(. 

From the conditions (2.7) we have that px(x)> y, - 1 < x < 1, for some positive 
constant y depending only on S5(1). Then 

(4.34a) P(x) s< -yx2/2 for -1 < x < 1, 
,. 2 

(4.34b) P(x) - P() - p(T) dT < -.5y(x2 - o2) < 0 

for O < < x < l and for - I < x < , < 0, 

and so 

(4.35a) lz (?) exp( P (x)/E-)| <. C/E,6 

0 (4.35b) |-E | Sj(()O(x, () d(| < C/E.. 

To deal with 

(4.36a) Io yx(~ ) p - q(())>(x,) df 

we integrate by parts obtaining 

(4.36b) Io = [-E-(x)(( - ( q(0)> (x, O 

+&-'fy(()>(x, )Dj(px(()-q(()) df 
0 

+E 1jXy(()(pX(X) - q(())>(x, () d. 

The first two terms on the right side of (4.36b) are clearly < C/E, and the last term 
is bounded by 

(4.36c) Ce1- 
f 

(x, ()|dt = Ce-1I0(x, x) - k(x,0)I < C/e. 

Equations (4.35) and (4.36) imply (4.31), and the proof of the lemma is complete. 
Proof of Theorem 2.5. Using (4.15) and the inequality I(x, E, /3) > c, we find that 

the inequality (2.11 a) is satisfied with y replaced by u1. To show that (2.11 a) is 
satisfied with y replaced by u2, we use Lemma 4.2 and Lemma 2.6. We must then 
show that 

(4.37) T|f -dT<CI(X, F,,) 
max(lxt, p) 

Using the change of variable s = T2, one finds that 

fT- dT 
I 

=f.5s(-P- 1)/2 ds for z in (0, 1). 

Setting 

(4.38) i(s, 13) = S(--1)/2 

to prove (4.37) it is thus certainly sufficient to show that 

(4.39) I* -x+ E i(s, )ds < C f6 i(x, /) ds. 
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Now using the change of variable t = s + E, we have 

I* fx2+2e (t/2 + (t/2- 
max(x 2 ?)+E 

< 3 (t/2)(-#- 1)/2 dt < CI(x, E,A 
X2 + E 

completing the proof of (4.37). 
Proof of Lemma 2.6. Using the notation (4.38), define 

(4.40) p(z) = Z(P-)/2f6 i(s, /3) ds. 

An easy calculation shows that, for z > 0 and ,B in [3IZ, Ps], 
(4.41) Dz(p(z) =-6(1 -#)/2Z(-3)/2 < 0. 

Hence ?(X2 + E) > p(2) > C2 for lxl < 1, E in (0, 1], and /,3 < /3 </3s which is the 
desired result. 

We now turn our attention to obtaining a priori bounds on the higher derivatives 
of y(x). 

4.5. A Priori Estimates for the Higher Derivatives. The estimates for the higher 
derivatives will follow from an inductive argument, using the fact that each higher 
derivative satisfies an equation of the form (4.32a) having a solution of the form 
(4.33). To begin the induction, we need to bound Dx2y(O), where y is the solution of 
(4.4) (and where we are continuing to assume (2.7a-g)). 

LEMMA 4.5. Lety be the solution of (4.4). Then 

(4.42) IY (0)I s CE(_12)"2I(0, E ) 

Proof. Note that Lemma 2.6 shows that the right side of (4.42) is > Cp- . From 
the results already obtained, in particular Lemma 4.1 and (4.30), without loss of 
generality we may assume y( ? 1) = 0 and (4.22) is valid. In this case, 

(4.43a) y(x) = JG(x, T)g(T) dT + 'G(x, T)g(T) dT, 

and by (4.22) g(O) = 0, hence differentiating (4.43a) twice gives 

(4.43b) Dxy(O) - GXX(O T)g(T) dT + fGxx(1 T)g(T) d 
-IO 

From (4.14) with i = 2 and x = 0, 

|DX2j - (0) I + I Dx2l + (0) | CP-2. 

Also observe that (Dx2G)(x, T) = (D2G)(-x, -X), and so, using (4.22) and (4.43b), 
one only needs to bound the integral of IGxx(0, T) TI from T = 0 to p and from T = p 
to 1. Using (4.18), (4.23), (4.24a, c) and (4.37), we obtain (4.42). 

We can now bound the higher derivatives at x = 0. 

LEMMA 4.6. In addition to (2.7a-g), assume that f, p, and q are in CK[- 1, 1] where 
K > 2, and let y be the solution of (l. 1). Then 

(4.44a) j4y(0)j Cp-kI(0, E,/) fork = 1, 2, .. ., K+ 2. 
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Furthermore, (4.44a) is also valid if f is a function of x and E satisfying 

(4.44b) IDXf(x, E) | C, k = 0,1, lxi X 1 

(4.44c) |Dyf(xL E)| < C(lxl + p)k?1I(x , 13), 2 < k K, -1 < x < 1. 

The constant in (4.44a) depends only on S5(K) and the constants in (4.44b, c). 

Proof. We have already proven (4.44a) for k = 1 and k = 2, and we now proceed 
by induction, assuming the result is true for derivatives 1 through k (2 < k < K + 1). 
Differentiating (1.1 a) k - 1 times with respect to x and recalling that p (0) = 0, we 
find that 

(4.45) e| Dxk + y(0) ! < C| Dxk>-ly(0) I + C|Dxk-1f (O, c) I + lower order terms. 

By the inductive hypothesis, Dxk-'y(O) is bounded by Cp-(k- 1)1(0,c, /3) and so 
(4.45), (4.44b, c) and Lemma 2.6 yield the result. 

We note that (4.44c) is overly restrictive here, but it will turn out to be appropriate 
for a later result. With Lemma 4.6 we can prove 

LEMMA 4.7. In addition to (2.7a-g), assume f, p, and q are in CK[ -1, 1] where 
K > 2, and let y be the solution of (1.1). Then 

(4.46) |Dxky(x)I < CpP-kI(0, c, ) fork = 1,2,..., K + 1,-I < x <1. 

Furthermore (4.46) remains valid when f is a function of x and E satisfying (4.44b, c). 
The constant in (4.46) depends only on S5(K) and the constants in (4.4b, c). 

Proof. The result is true for k = 1 by Theorem 2.5 and (4.40), (4.41). Assume the 
result is true for derivatives 1 through k (1 < k < K). Differentiate (1.la) k times 
and let z(x) Dxk +y(x). Then z(x) satisfies 

(4.47) - Ezx(x) -p(x)z(x) = s(x) for - 1 < x < 1, 
where s(x) involves kth and lower order x-derivatives of y and f. Recall (4.32a), 
(4.33), (4.34), and Lemma 4.6, and use the inductive hypothesis to find that 

(4.48) Dxk+Y(X)l s CPA-(k+l)I(0 E, 1) 

+Cp-2fXlpX-kI(O, E 13) exp[[-.5y( x2 - (2)/E] df. 

If Ixl < p, then the second term is bounded by Cp-2jxIp-kI(0, E, /) giving the 
result. For Ixl > p, in the integral use the change of variable 4 = lxl - ( and theli 
use the inequality 21xI - ' > IxI > p for ' in [0, Ixi] to obtain the result. 

We can now prove 

THEOREM 4.8. In addition to (2.7), assume f, p, and q are in CK[- 1, 1], where 
K > 2, and lety be the solution of (1.1). Then 

(4.49) lDxky(x)l < C(Ixl + P) >kI(X, E, 1) 
fork= 1,2,...,k+ 1,-i Ix 1. 

Furthermore (4.49) remains valid if f is a function of x and E satisfying (4.44b, c). The 
constant in (4.49) depends only on S5(K) and the constant in (4.44b, c). 
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Proof. Let T >, 1 be a number depending only on S5(K); a specific choice of ?T 
will be made right after (4.58) below. Since it is sufficient to prove the result for - 
bounded above by some fixed positive constant eo, we may assume 2?Tp < 1. We 
first demonstrate that when lxl < 2?Tp, (4.49) follows from (4.46). In this case, since 
(lxI + p)P-k lies between p-k and (27Tp + p)P-k, it suffices to show 

(4.50a) I(0, -, B) < CXI(2?Tp,E,) 

and so using the notation (4.38) it suffices to show 

(4.50b) ?+ I(5 S) ds < C TI(2?Tp, E ) 

Using the change of variable t = s + 47T2E, we have 

(4.51) JE?4 i(s, /) ds 

| 8T2Ei4 (4ST2t/(1 + 4 2 - 4%T E) + t/(1 + 4ST2),/] dt 
?+4 .T 

2 

< 1?+8T2?[t/(l + 47T2)](P18A)/2 dt < CXI(2vp, E, /) 
?T2 

Et( + 4 CI(?Tp 

as claimed. We may thus suppose IxI > 2?Tp for the rest of the proof of (4.49). 
We now proceed inductively as in the proof of Lemma 4.7, using (4.47). It will be 

convenient to define 

(4.52a) E(x, () = exp[-.5y(x2 - 

From (4.32), (4.33), (4.34), (4.44), (2.13) and the inductive hypothesis 

(4.52b) |z(x)| < CpPklI(O, E, /3) exp(-Yx 2/(2e)) 

+ CE-1fx(I I+p)PkJ(-, E, /3)E(x, () dl T1 + T2. 

Examination of (4.52) shows that we can, for convenience, suppose that x > 0. We 
first treat the term T,. Let m be an integer larger than 2 ?+1)/2. Then since 
x> 2Tp> p, from (4.50a) I(O, e, /) < CI(2Tp, e, /3) < C,I(p, ,- /) and so using 
(2.3), 

13-k-I X/-k-1 
(4.53) T1 = C_ x+ 

xPlk-1 (x + P)Pfk1I 

(X+P)f-k-1~ II[X E,) 
(0, c,' ,3)p2m 

X2mn%"p -X2 
* (+) ( [ I(x ,B,)x 2m P2m exp(-yx/(2)) 

< C(X + p)-k-1I(X E, 1)[I(p, e,3 )p2m/(I(x E, :)x2)]. 

If the last term in brackets is shown to be bounded by 1, then the contribution T, to 
the bound on Dxk+ y(x) will be bounded as claimed. For this it suffices to show that 

(4.54) F(z) zm i(s, /) ds 
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is increasing for z in (0, 1], to which end we have 

(4.55) DzF(z) = mzm-1f6 i(s, /3) ds - zmi(z + E /3) 

> mzm-1(z + e)i(2(z + e), zi) - zmj(z + , /3), 

which is larger than zero by the choice of m. 
We next turn our attention to the second term, T2, on the right side of (4.52b). We 

have 

(4.56) 2 C c2fX(t + pC2, /3) E(x, () df 
0 

+ c2jx[(P J(t, c, /3)] [ytp-2E(x, ()] dt T3 + C2T4. 
p 

Now since x > 2?Tp, 

(4.57) 13 T spCp 2pkI(O, ,/3) exp(- .25yx2/c), 

and so T3 can be bounded as desired exactly as was T1. 
To bound T4, perform integration by parts as delimited by the brackets in (4.56) 

and find 

(4.58a) T4 < (xB k I(x, e, /3) -0) 

+ X[( k - 1)-2y- Ip2 -2]p-24lk-I(, k , /3)E(x, ) dt 
p 

+ 2 -k- 1E(x, ) d(. 
p 

From Lemma 2.6, and since here > p, 

(4.58b) |x24-k- 'E(x, () df < Cf ljky (p2 , /)E(x, /( d d 
sp XP 

C3 Ix - 
kY( 24- 2 ) -2Ij( ( : E (x, df. 

p 

Now choose ST > 1 so that C3p2/(7Tp)2 s< 1/3 and so that 

I - (/ - k - 1)Y-1p2/( TP)21 < 1/3. 

Then, having selected such a 7T, (4.58) shows that 

(4.59) 14 < x-k-lI(x, E, ,) + T4/3 + T4/3. 

Since here x > p, (4.59) completes by induction the establishment of (4.49) and the 
proof of the theorem is finished. 

We now complete the establishment of the a priori estimates by proving Theorem 
2.8. 

Proof of Theorem 2.8. First recall that for k = 1,..., m the differential equation 
satisfied by z(x) = Dxky(x) is given by (2.10) with the dependence of g(x) on the 
derivatives of y and the data (p, q and f ) as described below (2.10). Also note that 
the value of /B associated with (2.10) is given by [q(O) - kpx(0)]/px(0) = m + A\ - k 
> A for 1 < k < m, and so in particular 

[q(0) - kpx(0)] > A\Px(O) > A\kq/(m + A\) > I3lkq/(m + /3). 
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Thus [q(x) - kpx(x)] is positive in a neighborhood N of 0 and so using Remark 2.2 
to bound Dxky at the endpoints of N, one may use the maximum principle to bound 
Dxky(x) for x in N (for 1 < k < m) and thereby obtain (2.15a). 

Analogous to the discussion in Remark 2.3, we can just as well assume that for 
- 1 < X 4 1, [q(x) - mpx(x)] is bounded above a positive constant k* which 
depends only on S5(m). Now for k = m; g(x) in (2.10) depends on at most mth 
order derivatives of p, q and f and ony, yx,..., Dx,-'y and so Ig(x)l + Igx(x)l < C, 
also the value of /3 for (2.10) with k = m is A\, and so Theorem 2.5 applies to (2.10) 
and yields precisely the bound (2.15b) for Dx2+'y(x), since A\ - 1 = ,B - (m + 1). 
Now suppose i > 2. We establish the rest of (2.15b) by induction with the aid of 
Theorem 4.8. Suppose (2.15b) is true for derivatives m + 1 throughj where m + 1 < 
j < m + i. Then apply Theorem 4.8 to (2.10) taking /3 = A\, K = max(2, j - m) and 
k = j + 1 - m and obtain the result. 

We complete this section by proving the claims concerning the convergence as E 
approaches 0 of y to the solution v of the reduced problem. 

Proof of Remark 2.10. Let e(x) denote y(x) - v(x). Subtracting the equation 
satisfied by v from that satisfied by y yields 

(4.60a) ex(x) + (-q(x)/p(x))e(x) = -cyxx(x)/p(x) forx * 0 

(4.60b) e(- 1) = e(l) = 0. 

Now the solution of an equation of the form 

(4.61a) ex(x) + a(x)e(x) = b(x), e(xo) = 0, 

is given by 

(4.61b) e(x) = exp(-A(x))f exp(A(t))b(t) dt whereA(t) =a(s) ds 

and where to in (- 1, 1) is arbitrary. 
Note that by using the change of variable x-= -x, the inequality (2.17) in the 

case - 1 < x < 0 will follow from the case where 0 < x < 1, so we proceed 
assuming x > 0. We may thus take xo = = 1 in (4.61b) to solve (4.60) for x > 0, 
and obtain 

(4.62) e (x) = exp(f' j(;) ds) 

1 ( (() P(exp ( ds ))(_q )dt for x > 0 . 

Now integrate by parts as indicated by the braces in (4.62) and obtain 

(4.63) e(x) = exp(j -jq() ds) 

P (s-) ) q()t) +x lx (t) p ()S() d 

* (-,-q(t)Dx3y(t) + -qx (t) yxx(t)) q-2(t) dt. 
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Noting that p(x) > 0 for x > 0, (4.63) shows that for x > 0 

(4.64) le(x)I < 1,Yxx(1)/kql + |eyxx(x)/kql +f'cl D)y(t)Jk-j dt 

+ max J,qx(t)Yxx(t)kq 

The inequality (2.17) for x > 0 then follows from (4.64) and Theorems 2.7 and 2.8 
and the argument in the first part of the proof of Theorem 2.8, while the inequality 
(2.17) for x = 0 follows from the results just mentioned and from the fact that 

(4.65) q(O)e(O) = yxx (O). 
The proof of this can be organized by verifying the result for the cases 0 < ,B < 1, 
/3 = 1, 1 < / < 2, 3 = 2, 2 < / < 3, /3 = 3, and /B> 3. 

Proof of Remark 2.11. Let e(x) = y(x) - v(x). Then e(x) satisfies 

(4.66) Loe(x) -p(x)ex(x) + q(x)e(x) = -yxx(x). 

By Theorem 2.4 and (2.1) we have that for IxI < 1/2, y, yx and yxx are all bounded in 
magnitude by a constant depending only on S4(2), and so 

le(O)I + 1yxx(x) I < C1c for lxl < 1/2. 
We now use a comparison function argument to bound e(x). Define the two 
functions ++ and 4- by 4 +(x) = ? e(x) + Cl e/kq + Cl E. Then 

(4.67a) L0+4> +?yxx(x) + Cle + kqC,e > 0 for lxl < 1/2, 

and 

(4.67b) A+(O) > ?. 

Using the fact thatq > 0, and p(x) < 0 for x > 0 and p(x) > 0 for x < 0, one can 
easily check by contradiction that (4.67) implies that A+(x) > 0 for lxl < 1/2 
proving the result. 

V. Numerical Results. In this section we present some numerical experiments 
which illustrate Theorem 3.5 (particularly (3.17a)) and which suggest that modifica- 
tion of the El-Mistikawy Werle scheme near the turning point to satisfy IP(x)l < Cx 
is indeed necessary to prevent loss of accuracy when - << h and IxI < h. 

Calculations were done for Eq. (1.1) on the interval [0,1] instead of [- 1,1] with 
one turning point located at z = 1/2 for which a = 1/3 was chosen to be either 4, 
2, or 4/3. The coefficients p(x) and q(x) were defined by 

(5.1) p(x) = a(x - z) + .3121 a(x _ Z)2, 

q(x) = 1 + .2764(x - z). 

The right-hand side f(x) Ly(x) and the boundary data d, = y(O) and d2 = y(l) 
were determined by defining the solution y(x) to be 

(5.2) y(x) = [.291(x _ Z)2 + ]f/ + [.291(x _ Z)2 + ]( )/ (X- Z) 

+exp(- .5x2). 

The form of the function y(x) in (5.2) was chosen such that its various derivatives 
have behavior as bad as and no worse than the estimates in Theorem 2.7 for any 
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given /B in (0, 1). For a given choice of /3, uniform meshes with h = 1/J, J = 

32, 64,... ., 1024 were used. To obtain a wide variation of relationships between h 
and c, the problem was solved with E hS for various values of s, i.e., the equation 
solved was 

(5.3a) - hsyXx(x) - p (x)yx(x) + q(x) y(x) = (x) forO <x <1, 

(5.3b) y(O) = d, and y(l) = d2. 

The calculations presented here were done in single precision on a CDC-6500 
(approximately 14 significant digits) except that the decomposition and backsolve of 
the linear system (3. 1b), (3.3), (3.4) was done in double precision (approximately 28 
significant digits). A few comparison runs using single precision throughout revealed 
no substantial changes in the results given here. Table 1 contains results from solving 
(5.3) with /3 = 1/4 using the El-Mistikawy Werle scheme (i.e., P(x) on each interval 
(xJ, xJ+ 1) equals ( pj + pj + 1)/2 and similarly for Q and F) but with the definition 
of P(x) modified near the turning point as described immediately after (3.16). 
Results for particular values of s are given in each column. The l1 error defined to 
be the maximum over j = 1,.. ., J - 1 of IYj - y(xj)l is listed under E., and the 
value of J is given in the first column. The numerical rate of convergence (listed 
under the heading rate) is determined from the E. values for two successive values 
of J (e.g., E. and E2 corresponding to h - 1/J and h = 1/(2J), respectively) by 

(5.4) rate (ln E' - ln E 2 )/ln(2). 

TABLE 1 
Numerical results for the modified El-Mistikawy Werle scheme 

applied to (5.1)- (5.3), 3 =1/4 

[=1 | h | = h | = |C h 2 E h 3 

J EOO Rate EOO Rate EcO Rate EOO Rate EOO Rate EOO Rate 

32 6.2E-5 3.6E-4 1.9E-3 1.1E-2 3.2E-2 1.3E-1 

2.22 1.97 1.48 .60 .19 .27 

64 1.3E-5 9.3E-5 6.7E-4 7.5E-3 2.8E-2 1.0E-1 

2.14 1.53 1.40 .67 .22 .32 

128 3.0E-6 3.2E-5 2,5E-4 4.7E-3 2.4E-2 8.4E-2 

2.08 1.45 1.34 .73 .23 .35 

256 7.2E-7 1.2E-5 1.0E-4 2.8E-3 2.0E-2 6.6E-2 

2.04 1.53 1.12 .76 .24 .36 

512 1.8E-7 4.1E-6 4.6E-5 1.7E-3 1.7E-2 5.1E-2 

1.99 1.57 1.12 .79 .25 .37 

1024 4.4E-8 1.4E-6 2.1E-5 9.7E-4 1.4E-2 4.0E-2 
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TABLE 2 
Numerical results for the modified El-Mistikawy Werle scheme 
applied to (5.1)- (5.3), /3 = 1/2 

E e= | e=h 
5 

| e=h | h1 5 h2 h3 

J Eo. Rate Eo. Rate Eo. Rate Eo. Rate Eo. Rate Eo. Rate 

32 1.7E-5 1.6E-4 7.OE-4 4.SE-3 1.SE-2 3.5E-2 

2.40 1.96 1.66 .85 .43 .62 

64 3.3E-6 4.1E-5 2.2E-4 2.5E-3 1.1E-2 2.3E-2 

2.27 1.96 1.47 .90 .46 .68 

128 6.7E-7 1.1E-5 8.OE-5 1.4E-3 7.9E-3 1.4E-2 

2.16 1.88 1.48 .95 .48 .71 

256 1.SE-7 2.9E-6 2.9E-5 7.OE-4 5.7E-3 8.6E-3 

2.08 1.51 1.47 .98 .48 .73 

512 3.6E-8 1.OE-6 1.OE-5 3.6E-4 4.1E-3 5.2E-3 

1.89 1.58 1.46 1.00 .49 .74 

1024 9.6E-9 3.4E-7 3.8E-6 1.8E-4 2.9E-3 3.1E-3 

TABLE 3 
Numerical results for the modified El-Mistikawy Werle scheme 
applied to (5.1)- (5.3), /3 = 3/4 

| e=5 h 
1 

h. h 
5 

h2 e- h3 

J E0 Rate E00 Rate E0 Rate E00 Rate E00 Rate E00 Rate 

32 7.7E-6 8.7E-5 3.2E-4 1.8E-3 5.8E-3 9.4E-3 

2.47 1.94 1.84 1.05 .67 .96 

64 1.4E-6 2.3E-5 8.9E-5 8.SE-4 3.6E-3 4.8E-3 

2.27 1.92 1.73 1.10 .70 1.04 

128 2.9E-7 6.OE-6 2.7E-5 4.OE-4 2.2E-3 2.4E-3 

1.89 1.92 1.58 1.14 .71 1.07 

256 7.8E-8 1.6E-6 8.9E-6 1.8E-4 1.4E-3 1.1E-3 

1.96 1.94 1.56 1.17 .72 1.09 

512 2.OE-8 4.1E-7 3.OE-6 8.OE-5 8.3E-4 5.2E-4 

2.22 1.98 1.54 1.19 .73 1.10 

1024 4.3E-9 1.1E-7 1.OE-6 3.5E-5 5.OE-4 2.'4E-4 
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TABLE 4 

Numerical results for the original El-Mistikawy Werle scheme 
applied to (5.1)- (5.3), /B = 1/4 

E = 1 F- = h2 3 h' 5 h 2 3 

J Eoo Rate Eoo Rate Eoo Rate Eoo Rate Eoo Rate Eoo Rate 

32 4.L4E-5 2.6E-4 1.L4E-3 4.9E-3 1.6E-2 1.'4E-2 

2.00 1.43 1.18 .66 .30 -.55 

64 1.1E-5 9.5E-5 6.1E-4 3.1E-3 1.3E-2 2.1E-2 

2.00 1.46 1.21 .63 .28 -.35 

128 2.7E-6 3.5E-5 2.6E-4 2.OE-3 1.1E-2 2.7E-2 

2.00 1.51 1.19 .65 .26 -.19 

256 6.8E-7 1.2E-5 1.2E-4 1.3E-3 9.OE-3 3.OE-2 

2.00 1.56 1.18 .67 .25 -.08 

512 1.7E-7 4.1E-6 5.1E-5 8.OE-4 7.6E-3 3.2E-2 

1.97 1.59 1.13 .66 .25 -.01 

1024 4.4E-8 1.4E-6 2.3E-5 5.1E-4 6.4E-3 3.2E-2 

TABLE 5 

Numerical results for the original El-Mistikawy Werle scheme 

applied to (5.1)- (5.3), /B = 3/4 

E = 1 F-= h * 5 1h h.5 h 2 h 3 

J E Rate E Rate E Rate E Rate E Rate E Rate 

32 5.3E-6 5.5E-5 1.OE-4 2.3E-4 4.6E-4 2.6E-3 

2.00 1.66 1.58 1.23 .55 .57 

64 1.3E-6 1.7E-5 3.5E-5 9.9E-5 3.1E-4 1.8E-3 

2.00 1.75 1.39 1.27 .55 .55 

128 3.3E-7 5.1E-6 1.3E-5 4.1E-5 2.2E-4 1.2E-3 

2.00 1.83 1.46 .91 .66 .27 

256 8.'4E-8 1.5E-6 4.8E-6 2.2E-5 1.'4E-4 1.OE-3 

2.01 1.89 1.50 .90 .71 .43 

512 2.1E-8 3.9E-7 1.7E-6 1.2E-5 8.3E-5 7.5E-4 

2.25 1.94 1.52 .99 ,73 .53 

1024 |4.4E-9 1. OE-7 5.9E-7 5.9E-6 5.OE-5 5.2E-4 
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The corresponding results for /3 = 1/2 and /3 = 3/4 are displayed in Tables 2 and 3. 
These results are consistent with (3.17a) and also indicate that the estimate (3.17a) is 
not sharp unless e = h2. The results in Tables 4 and 5 are for the case ,B = 1/4 and 
/3 = 3/4 when the original El-Mistikawy Werle scheme (P(x) not modified near the 
turning point) is used to solve (5.3). Note that when E > h2 the rates for the modified 
and original El-Mistikawy Werle schemes are similar while the magnitude of the 
errors is actually in general smaller for the original method. However, when e = h3 
the results suggest that the rate of convergence of the original scheme deteriorates. 
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